Thermal Fluxes and Solar Energy Storage in a Massive Brick Wall in Natural Conditions

Author:

Owczarek Mariusz

Abstract

The thermal state of building elements is a combination of steady and transient states. Changes in temperature and energy streams in the wall of the building in the transient state are particularly intense in its outer layer. The factors causing them are solar radiation, ambient temperature and long-wave radiation. Due to the greater variability of these factors during the summer, the importance of the transient state increases at this time. The study analysed heat transfer in three aspects, temperatures in the outer, middle and inner parts of the wall, heat fluxes between these layers and absorption of solar energy, heat transfer coefficient on the wall exterior was also calculated. The analysis is based on temperature measurements at several depths in the wall and measurements of solar radiation. The subject of research is a solid brick wall. The results show that the characteristics of heat flow in winter and summer for the local climate show distinct differences. In the winter, the maximum temperature difference between the external and internal surface of the wall was 10 °C and in summer, 20 °C. In the winter, the negative flux on the internal surface reached 10 W/m2 and on the external 40 W/m2 and was constant throughout the day. The mean heat transfer coefficient on the exterior surface for winter week was 8 W/(mK). A Nusselt and Biot number for dimensionless convection analysis was calculated. The research contributes to the calculation of the variability of heat or cold demand in a daily period and to learn about the processes of energy storage in the wall using sensible heat.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference35 articles.

1. State of the art in building modelling and energy performances prediction: A review

2. Energy Performance of Buildings—Energy Needs for Heating and Cooling, Internal Temperatures and Sensible and Latent Heat Loads—Part 1: Calculation Procedures,2017

3. Thermal Performance of Building Components—Dynamic Thermal Characteristics—Calculation Methods,2007

4. Building energy performance analysis: A case study

5. Daily characteristics of air temperature and solar irradiation-input data for modelling of thermal behaviour of buildings

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3