Abstract
With increased usage, individual batteries within the battery pack will begin to show disparate voltage and State of Charge (SOC) profiles, which will impact the time at which batteries become balanced. Commercial battery management systems (BMSs), used in electric vehicles (EVs) and microgrids, typically send out signals suggesting removal of individual batteries or entire packs to prevent thermal runaway scenarios. To reuse these batteries, this paper presents an analysis of an off-the-shelf Orion BMS with a constrained cycling approach to assess the voltage and SOC balancing and thermal performances of such near-to-second life batteries. A scaled-down pack of series-connected batteries in 6s1p and 6s2p topologies are cycled through a combination of US06 drive and constant charge (CC) profiles using an OPAL-RT real-time Hardware-in-the-loop (HIL) simulator. These results are compared with those obtained from the Matlab/Simulink model to present the error incurred in the simulation environment. Results suggest that the close-to-second life batteries can be reused if operated in a constrained manner and that a scaled-up battery pack topology reduces incurred error.
Funder
National Science Foundation
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献