Optimizing Speech Emotion Recognition with Deep Learning and Grey Wolf Optimization: A Multi-Dataset Approach

Author:

Tyagi Suryakant1,Szénási Sándor23ORCID

Affiliation:

1. Doctoral School of Applied Informatics and Applied Mathematics, Óbuda University, 1034 Budapest, Hungary

2. John von Neumann Faculty of Informatics, Óbuda University, 1034 Budapest, Hungary

3. Faculty of Economics and Informatics, J. Selye University, 945 01 Komarno, Slovakia

Abstract

Machine learning and speech emotion recognition are rapidly evolving fields, significantly impacting human-centered computing. Machine learning enables computers to learn from data and make predictions, while speech emotion recognition allows computers to identify and understand human emotions from speech. These technologies contribute to the creation of innovative human–computer interaction (HCI) applications. Deep learning algorithms, capable of learning high-level features directly from raw data, have given rise to new emotion recognition approaches employing models trained on advanced speech representations like spectrograms and time–frequency representations. This study introduces CNN and LSTM models with GWO optimization, aiming to determine optimal parameters for achieving enhanced accuracy within a specified parameter set. The proposed CNN and LSTM models with GWO optimization underwent performance testing on four diverse datasets—RAVDESS, SAVEE, TESS, and EMODB. The results indicated superior performance of the models compared to linear and kernelized SVM, with or without GWO optimizers.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3