Prediction of Oxygen Content in Boiler Flue Gas Based on a Convolutional Neural Network

Author:

Li Zhenhua1,Li Guanghong1,Shi Bin1

Affiliation:

1. School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China

Abstract

As one of the core pieces of equipment of the thermal power generation system, the economic and environmental performance of a boiler determines the energy efficiency of the thermal power generation unit. The oxygen content in boiler flue gas is an important parameter reflecting the combustion status of the furnace, and accurate prediction of flue gas oxygen content is of great significance for online boiler optimization. In order to solve the online prediction problem of the oxygen content in boiler flue gas, a CNN is applied to build a time series prediction model, which takes the time series samples within a fixed time window as the input of the model and uses several feature extraction modules containing convolutional, activation, and pooling layers for feature extraction and compression, and the model output is the oxygen content in boiler flue gas. Since the oxygen content in boiler flue gas is not only correlated with other variables but also influenced by its own historical trend, the input of the CNN model is improved, and an oxygen content in boiler flue gas time series prediction model (TS-CNN) is established, which takes the historical values of the boiler flue gas oxygen content as the input of the model. The comparison test results show that the R2 and RMSE of the TS-CNN model are 0.8929 and 0.1684, respectively. The prediction accuracy is higher than the CNN model, LSSVM model, and BPNN model by 18.6%, 31.2%, and 54.6%, respectively.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference27 articles.

1. Da, B.-W. (2021). Strategies for Clean Coal Technologies and Carbon Reduction Investment of Coal-Electric Supply Chain under Cap-and-Trade Model, China University of Mining and Technology.

2. Soft measurement of flue gas oxygen content based on LS-SVM and simplex;Liu;J. Eng. Therm. Energy Power,2010

3. Discussion on logic calculation of oxygen content in boiler flue gas for 300MW unit;Zhao;North China Electr. Power,2007

4. Research status of soft measurement technology of typical thermal parameters for utility boilers;Luo;Therm. Power Gener.,2015

5. Economic analyze for utility boiler operated in different oxygen content outlet furnace and it’s optimization;Liu;Proc. CSEE,2003

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3