Mechanism and Kinetics of Interaction of FLiNaK–CeF3 Melt with Water Vapors and Oxygen in the Air Atmosphere

Author:

Zakiryanova Irina D.12,Mushnikov Petr N.13ORCID,Nikolaeva Elena V.12,Zaikov Yury P.14

Affiliation:

1. Institute of High Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences, Yekaterinburg 620066, Russia

2. Institute of New Materials and Technologies, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Yekaterinburg 620000, Russia

3. Institute of Physics and Technology, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Yekaterinburg 620000, Russia

4. Institute of Chemical Engineering, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Yekaterinburg 620000, Russia

Abstract

The mechanism and kinetic parameters of the interaction of the FLiNaK–CeF3 melt with water vapors and oxygen in the air atmosphere were determined using Raman and IR spectroscopy, XRD analysis, and thermodynamic modeling of processes. The presence of the 4CeF3(solution) + 6H2O (gas) + O2(gas) = 4CeO2(solid) + 12HF(gas) reaction, which disturbs the fluoride melt homogeneity, was verified in situ by Raman spectroscopy adopted for high-temperature, chemically aggressive fluoride systems. Based on the obtained spectral data, the type of the kinetic equation, order, and rate constant of the chemical reaction were determined. The concentration of cerium dioxide was found to increase linearly in time and a zero reaction order with respect to CeO2 was detected. The change in the concentration of CeO2 over time at T = 510 °C is described by the equation C = 0.085t; the reaction rate constant is 0.085 mol. %∙min−1. The obtained kinetic parameters may be used to model emergencies related with the depressurization of the coolant circuit or the working area of the molten salt reactor.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3