Experimental Study on Mechanical Properties of Concrete Containing Waste Glass and Its Application on Concrete-Filled Steel Tubular Columns

Author:

Diao Yan1,Chen Long2,Huang Yitao3ORCID

Affiliation:

1. School of Architecture and Civil Engineering, Xihua University, Chengdu 610039,China

2. Chengdu Tianfu International Airport, Chengdu 641419, China

3. Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CN Delft, The Netherlands

Abstract

Waste glass (WG), as a nonbiodegradable material, poses a threat to environmental protection. The reuse of WG as a raw material to replace cement or aggregate in concrete production is gaining attention for recycling purposes. However, the optimal proportion of WG in concrete mixtures and its particle size distribution are hard to determine. Large glass particles are prone to leading to the undesirable alkali–silica reaction (ASR) in concrete. Therefore, in this study, cement and aggregate in concrete mixtures are partially replaced by combinations of glass powder (<30 μm) and glass beads (0.2–1.7 mm), respectively. Glass concretes (GCs) containing waste glass at various replacement ratios (0, 10, 15, 20, and 30%) are prepared, and their flowability and compressive strength are evaluated and compared. Finally, steel tubes filled by ordinary concrete (OCFSTs) and steel tubes filled by glass concrete (GCFSTs) are fabricated and tested in axial compression. The test results show that the slump and slump flow increase when the replacement ratio is lower than 20%, and the maximum slump value (250 mm) is achieved for concrete with the use of 20% waste glass. With regard to compressive strength, as the glass replacement percentage is increased, the compressive strength of GC continues to reduce. The maximum decrease of compressive strength (merely 70% of compressive strength for original concrete) is observed in GC mixed with 20% glass, which might be attributed to the smooth surface of glass, consequently weakening the interfacial bond strength between the glass and matrix. In terms of the bearing capacity of GCFSTs, the axial compressive strength of GCFSTs decreases as more GC is used. However, no obvious reduction is observed compared to OCFSTs (less than 10% for GCFSTs containing 30% GP). Moreover, GCFSTs show greater (no less than 25% more) deformational ability at peak strength over OCFST columns, demonstrating that GC is a promising alternative for normal concrete. Finally, the feasibility of existing design codes (AISC, EC4, and GB50936-2014) to assess the bearing capacity of GCFSTs is evaluated by comparing the test and calculated results. The current codes, in general, give a conservative prediction and EC4 provides the closest value (predicted to experimental peak load ratio is 0.9).

Funder

Ministry of Education

Xihua University

China Scholarship Council

Delft University of Technology

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3