Design and Synthesis of Novel 5-((3-(Trifluoromethyl)piperidin-1-yl)sulfonyl)indoline-2,3-dione Derivatives as Promising Antiviral Agents: In Vitro, In Silico, and Structure–Activity Relationship Studies

Author:

Ezz Eldin Rogy R.1ORCID,Saleh Marwa A.2,Alwarsh Sefat A.3ORCID,Rushdi Areej4ORCID,Althoqapy Azza Ali4ORCID,El Saeed Hoda S.2,Abo Elmaaty Ayman5ORCID

Affiliation:

1. Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt

2. Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt

3. Department of Science, Prince Sultan Military College of Health Sciences, Dhahran 31932, Saudi Arabia

4. Department of Medical Microbiology and Immunology, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11651, Egypt

5. Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt

Abstract

Herein, a series of new isatin derivatives was designed and synthesized (1–9) as broad-spectrum antiviral agents. Consequently, the antiviral activities of the synthesized compounds (1–9) were pursued against three viruses, namely influenza virus (H1N1), herpes simplex virus 1 (HSV-1), and coxsackievirus B3 (COX-B3). In particular, compounds 9, 5, and 4 displayed the highest antiviral activity against H1N1, HSV-1, and COX-B3 with IC50 values of 0.0027, 0.0022, and 0.0092 µM, respectively. Compound 7 was the safest, with a CC50 value of 315,578.68 µM. Moreover, a quantitative PCR (real-time PCR) assay was carried out for the most relevant compounds. The selected compounds exhibited a decrease in viral gene expression. Additionally, the conducted in silico studies emphasized the binding affinities of the synthesized compounds and their reliable pharmacokinetic properties as well. Finally, a structure–antiviral activity relationship study was conducted to anticipate the antiviral activity change upon future structural modification.

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Reference76 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3