Synthesis and Evaluation of 99mTc-Labelled 2-Nitroimidazole Derivatives with Different Linkers for Tumour Hypoxia Imaging

Author:

Ruan Qing12ORCID,Liu Yitong2,Liao Lihao2,Hao Jinyu2,Jiang Yuhao2,Jiang Jianyong1ORCID,Zhang Junbo2ORCID

Affiliation:

1. Key Laboratory of Beam Technology of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China

2. Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China

Abstract

When developing novel radiopharmaceuticals, a linker moiety between the chelator and targeting vector can have a crucial influence on adjusting the affinity of the tracer and its biodistribution in organisms. To develop novel 99mTc-labelled hypoxia imaging radiotracers, in this study, five isocyanide-containing 2-nitroimidazole derivatives with different linkers (L1, L2, L3, L4 and L5) were synthesised and radiolabelled with technetium-99m to obtain five stable 99mTc-complexes ([99mTc]Tc-L1, [99mTc]Tc-L2, [99mTc]Tc-L3, [99mTc]Tc-L4 and [99mTc]Tc-L5). Corresponding rhenium analogues of [99mTc]Tc-L1 were synthesised and suggested the structures of these 99mTc-complexes would be a monovalent cation with a technetium (I) core surrounded by six ligands. [99mTc]Tc-L1 is hydrophilic, while the lipophilicities of [99mTc]Tc-L2, [99mTc]Tc-L3, [99mTc]Tc-L4 and [99mTc]Tc-L5 are close. In vitro cell experiments showed that all five novel 99mTc-complexes had higher uptake in hypoxic cells compared with aerobic cells, which indicates the complexes have good hypoxia selectivity. The biodistribution of the five 99mTc-complexes in S180 tumour-bearing mice showed that they all had certain uptake in the tumours. Among them, [99mTc]Tc-L1 had the highest tumour-to-muscle (4.68 ± 0.44) and tumour-to-blood (3.81 ± 0.46) ratios. The introduction of polyethylene glycol (PEG) chains effectively reduced the lipophilicity and decreased uptake by the liver, intestine and blood but also increased clearance from the tumours. In vivo metabolic studies showed [99mTc]Tc-L1 kept intact and remained stable in tumour, blood and urine at 2 h post-injection. The results of SPECT imaging showed that [99mTc]Tc-L1 had significant tumour uptake at 2 h post-injection, but there was still high uptake in abdominal organs such as the liver and kidney, suggesting that this complex needs to be further optimised before being used for tumour hypoxia imaging.

Funder

National Natural Science Foundation of China

Beijing Municipal Science and Technology Commission

China Postdoctoral Science Foundation

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3