Prognosis and Personalized In Silico Prediction of Treatment Efficacy in Cardiovascular and Chronic Kidney Disease: A Proof-of-Concept Study

Author:

Jaimes Campos Mayra Alejandra12ORCID,Andújar Iván3,Keller Felix4ORCID,Mayer Gert4,Rossing Peter56,Staessen Jan A.7,Delles Christian8ORCID,Beige Joachim910,Glorieux Griet11ORCID,Clark Andrew L.12,Mullen William8ORCID,Schanstra Joost P.1314,Vlahou Antonia15ORCID,Rossing Kasper616,Peter Karlheinz17181920ORCID,Ortiz Alberto21ORCID,Campbell Archie22ORCID,Persson Frederik5,Latosinska Agnieszka1,Mischak Harald18ORCID,Siwy Justyna1ORCID,Jankowski Joachim22324

Affiliation:

1. Mosaiques Diagnostics GmbH, 30659 Hannover, Germany

2. Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, 52074 Aachen, Germany

3. Proteomic Laboratory, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba

4. Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria

5. Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark

6. Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark

7. Non-Profit Research Institute Alliance for the Promotion of Preventive Medicine, 2800 Mechlin, Belgium

8. School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK

9. Division of Nephrology and KfH Renal Unit, Hospital St Georg, 04129 Leipzig, Germany

10. Medical Clinic 2, Martin-Luther-University Halle/Wittenberg, 06112 Halle, Germany

11. Nephrology Section, Department of Internal Medicine, Ghent University Hospital, 9000 Ghent, Belgium

12. Hull University Teaching Hospitals NHS Trust, Castle Hill Hospital, Cottingham HU16 5JQ, UK

13. Institut National de la Santé et de la Recherche Médicale, Institute of Cardiovascular and Metabolic Disease, UMRS 1297, 31432 Toulouse, France

14. Renal Fibrosis, Université Toulouse III Paul-Sabatier, Route de Narbonne, 31062 Toulouse, France

15. Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens (BRFAA), 115 27 Athens, Greece

16. Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark

17. Atherothrombosis and Vascular Biology Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia

18. Department of Physiology, Anatomy, Microbiology, La Trobe University, Melbourne, VIC 3083, Australia

19. Department of Medicine and Immunology, Monash University, Melbourne, VIC 3800, Australia

20. Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC 3010, Australia

21. Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz UAM, 28040 Madrid, Spain

22. Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH16 4SB, UK

23. Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, 6211 Maastricht, The Netherlands

24. Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, 52074 Aachen, Germany

Abstract

(1) Background: Kidney and cardiovascular diseases are responsible for a large fraction of population morbidity and mortality. Early, targeted, personalized intervention represents the ideal approach to cope with this challenge. Proteomic/peptidomic changes are largely responsible for the onset and progression of these diseases and should hold information about the optimal means of treatment and prevention. (2) Methods: We investigated the prediction of renal or cardiovascular events using previously defined urinary peptidomic classifiers CKD273, HF2, and CAD160 in a cohort of 5585 subjects, in a retrospective study. (3) Results: We have demonstrated a highly significant prediction of events, with an HR of 2.59, 1.71, and 4.12 for HF, CAD, and CKD, respectively. We applied in silico treatment, implementing on each patient’s urinary profile changes to the classifiers corresponding to exactly defined peptide abundance changes, following commonly used interventions (MRA, SGLT2i, DPP4i, ARB, GLP1RA, olive oil, and exercise), as defined in previous studies. Applying the proteomic classifiers after the in silico treatment indicated the individual benefits of specific interventions on a personalized level. (4) Conclusions: The in silico evaluation may provide information on the future impact of specific drugs and interventions on endpoints, opening the door to a precision-based medicine approach. An investigation into the extent of the benefit of this approach in a prospective clinical trial is warranted.

Funder

German ministry for education and science

European Union’s Horizon 2020

European Union’s Horizon Europe Marie Skłodowska-Curie Actions Doctoral Networks Industrial Doctorates Programme

FIS/Fondos FEDER ERA-PerMed-JTC2022

Comunidad de Madrid en Biomedicina

CIFRA_COR-CM

Instituto de Salud Carlos III (ISCIII) RICORS program

European Union—NextGenerationEU

Mecanismo para la Recuperación y la Resiliencia (MRR), and SPACKDc

European Cooperation in Science and Technology

PREVENTCKD Consortium

HADEA

German Research Foundation

European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3