Triarylborane-“Click” Fluorescent Tag for Orthogonal Amino Acid Labelling, Interactions with DNA, Protein, and Cyclodextrins

Author:

Jurković Marta1ORCID,Ferger Matthias2,Drašković Isabela3ORCID,Marder Todd B.2ORCID,Piantanida Ivo1ORCID

Affiliation:

1. Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia

2. Institut für Anorganische Chemie, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

3. Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia

Abstract

The innovative design of a triarylborane (TB)-dye with one NMe2-alkylated (propargylated) group and one NMe2 group yielded a system that is both an NMe2 π-donor and an inductive NMe2-alkyl cationic acceptor. Consequently, the new TB-dye was highly sensitive to a “click” reaction with an azide-substituted lysine side chain (yielding TB-lysine), resulting in a bathochromic shift of emission of 100 nm. In addition, fluorene attached to the lysine C-terminus showed FRET with the TB-chromophore, also sensitive to interactions with targets. Both the TB-dye and TB-lysine showed high affinities towards both DNA and proteins, reporting binding by an opposite fluorimetric response for DNA/RNA (quenching) vs. BSA (increase). Thus, the novel TB-dye is an ideal fluorimetric probe for orthogonal incorporation into bio-targets by “click” reactions due to fluorescence reporting of the progress of the “click” reaction and further sensing of the binding site composition. The TB-dye is moderately toxic to human cell lines after 2–3 days of exposure, but efficiently enters cells in 90 min, being non-toxic at short exposure. The most important product of the “click” reaction, TB-lysine, was non-toxic to cells and showed equal distribution between mitochondria and lysosomes. Further studies would focus particularly on the very convenient monitoring of the progress of “click” conjugation of the TB-dye with biorelevant targets inside living cells by confocal microscopy.

Funder

Croatian Science Foundation

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3