Methodology to Solve the Multi-Objective Optimization of Acrylic Acid Production Using Neural Networks as Meta-Models

Author:

Sepulveda Geraldine Cáceres,Ochoa Silvia,Thibault JulesORCID

Abstract

It is paramount to optimize the performance of a chemical process in order to maximize its yield and productivity and to minimize the production cost and the environmental impact. The various objectives in optimization are often in conflict, and one must determine the best compromise solution usually using a representative model of the process. However, solving first-principle models can be a computationally intensive problem, thus making model-based multi-objective optimization (MOO) a time-consuming task. In this work, a methodology to perform the multi-objective optimization for a two-reactor system for the production of acrylic acid, using artificial neural networks (ANNs) as meta-models, is proposed in an effort to reduce the computational time required to circumscribe the Pareto domain. The performance of the meta-model confirmed good agreement between the experimental data and the model-predicted values of the existent relationships between the eight decision variables and the nine performance criteria of the process. Once the meta-model was built, the Pareto domain was circumscribed based on a genetic algorithm (GA) and ranked with the net flow method (NFM). Using the ANN surrogate model, the optimization time decreased by a factor of 15.5.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3