Field Test and Analysis of Energy-Saving Effects of Energy-Recovery Ventilators on Heat-Pump Electricity Consumption in a Classroom

Author:

Choi Jae-Sol,Kim Eui-JongORCID

Abstract

Energy-recovery ventilators (ERVs) are regarded as important energy-saving systems in buildings. It has been reported that they have high energy-saving rates compared with conventional ventilators that operate without energy recovery, but the saving rates have been obtained typically by employing chamber tests and simulations. In this work, a field-test method is proposed that uses a single test room but alternates the tested ventilation modes hourly. This proposed method is useful because an additional comparison room is not always available and can be a source of uncertainty for field tests. The test is performed in a classroom during a heating period, and the results are calibrated to account for different experimental conditions during the test period. The calibrated energy-saving rates indicate the effectiveness of the ERV; however, they are lower in the early hours of the system operation, for two reasons: (1) the maximum power control schemes of the heat pumps are applied for cases where the indoor temperatures are far lower than the set-point temperature; (2) the ventilation load seemingly represents a decreasing proportion of the total heating load in early hours owing to the thermal-capacity effects for the building, which was cooled for many hours. The findings are verified via a chamber test and simulations. As a consequence, it is important to account for actual system characteristics affected by the thermal behaviors of classrooms when the overall performance of a system is evaluated.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3