Guided Acoustic Waves in Polymer Rods with Varying Immersion Depth in Liquid

Author:

Lutter Klaus1,Backer Alexander1ORCID,Drese Klaus Stefan1ORCID

Affiliation:

1. Institute for Sensor and Actuator Technology, Coburg University of Applied Sciences and Arts, Am Hofbräuhaus 1B, 96450 Coburg, Germany

Abstract

Monitoring tanks and vessels play an important part in public infrastructure and several industrial processes. The goal of this work is to propose a new kind of guided acoustic wave sensor for measuring immersion depth. Common sensor types such as pressure sensors and airborne ultrasonic sensors are often limited to non-corrosive media, and can fail to distinguish between the media they reflect on or are submerged in. Motivated by this limitation, we developed a guided acoustic wave sensor made from polyethylene using piezoceramics. In contrast to existing sensors, low-frequency Hanning-windowed sine bursts were used to excite the L(0,1) mode within a solid polyethylene rod. The acoustic velocity within these rods changes with the immersion depth in the surrounding fluid. Thus, it is possible to detect changes in the surrounding media by measuring the time shifts of zero crossings through the rod after being reflected on the opposite end. The change in time of zero crossings is monotonically related to the immersion depth. This relative measurement method can be used in different kinds of liquids, including strong acids or bases.

Funder

Federal Ministry for Economic Affairs and Climate Action

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3