Comparison of Fluidic and Non-Fluidic Surface Plasmon Resonance Biosensor Variants for Angular and Intensity Modulation Measurements

Author:

Mrozek Piotr1ORCID,Oldak Lukasz2ORCID,Gorodkiewicz Ewa2

Affiliation:

1. Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland

2. Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland

Abstract

Fluidic and non-fluidic surface plasmon resonance measurements were realized for the same type of sensory layer and using the same mouse IgG antibody and anti-mouse IgG antibody biomolecular system. A comparison of the thicknesses of the anti-mouse IgG antibody layers bound to the ligand at increasing analyte concentrations ranging from 0.0 μg mL−1 to 5.0 μg mL−1 in the non-fluidic and the fluidic variant showed that the thickness of the bound anti-mouse antibody layers in the fluidic variant was approximately 1.5–3 times larger than in the non-fluidic variant. The greater thicknesses of the deposited layers were also reflected in the larger increment of the resonant angle in the fluidic variant compared to the non-fluidic variant in the considered range of analyte concentrations. The choice between fluidic and non-fluidic surface plasmon resonance biosensors may be justified by the availability of analyte volume and the intended modulation technique. When working with limited analyte, non-fluidic biosensors with intensity modulation are more advantageous. For larger analyte quantities, fluidic biosensors with angular modulation are recommended, primarily due to their slightly higher sensitivity in this measurement mode.

Funder

Polish Ministry of Education and Science

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference20 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3