Effects of Nano-Titanium Dioxide on the Horizontal Transfer of Antibiotic Resistance Genes in Microplastic Biofilms

Author:

Zhou Yangyuan12,Zhang Guosheng12,Zhang Dawei12,Li Weiying123,Zhu Ningzheng2,Bo Jinpei2,Meng Xiangzhou12,Chen Yao3ORCID,Qin Yu3,Liu Huajie4

Affiliation:

1. State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China

2. Jiaxing Key Laboratory of Environmental Risk Source Identification and Control, Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing 314051, China

3. School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China

4. School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China

Abstract

Emerging pollutants such as microplastics in water environments readily accumulate microorganisms on their surfaces, forming biofilms and concentrating antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Consequently, microplastic biofilms have attracted the attention of researchers. Horizontal gene transfer (HGT) of ARGs is one of the primary ways that bacteria acquire antibiotic resistance. Most studies focus on the effects of nanomaterials on suspended bacteria, but microplastic biofilms as hotspots for horizontal gene transfer also warrant significant investigation. This study primarily explored and compared the effects of nano-titanium dioxide on the conjugation transfer frequency of ARGs in suspended bacteria and microplastic biofilms. Nano-titanium dioxide could promote ARG conjugation in both suspended bacteria and microplastic biofilms, with a greater effect on the former. The mechanism involved nano-titanium dioxide promoting the production of reactive oxygen species (ROS) in suspended and biofilm bacteria, increasing the synthesis of outer membrane proteins, enhancing the cell membrane permeability, and elevating the expression levels of conjugation-related genes, thereby facilitating the conjugation transfer of ARGs. Biofilm bacteria, being heavily encased and protected by extracellular polymeric substances (EPS), exhibit greater resistance to external environmental pressure, resulting in the weaker impact of nano-titanium dioxide on biofilm bacteria compared to suspended bacteria. This study reveals the risk of ARG conjugation transfer within microplastic biofilms induced by nanomaterials, providing valuable insights into the risks of microplastic and antibiotic resistance dissemination in water environments.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Scientific Research Project of Fuzhou Water Supply Co. Ltd.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3