Abstract
In this study, the resistance to corrosion of niobium-doped tin dioxide (Nb-doped SnO2, NTO) and antimony-doped tin oxide (Sb-doped SnO2, ATO) supports has been probed for proton-exchange membrane fuel cell (PEMFC) application. To achieve this goal, ATO or NTO supports with loose-tube (fiber-in-tube) morphology were synthesized using electrospinning and decorated with platinum (Pt) nanoparticles. These cathode catalysts were submitted to two different electrochemical tests, an accelerated stress test following the EU Harmonised Test Protocols for PEMFC in a single cell configuration and an 850 h test in real air-breathing PEMFC systems. In both cases, the dissolution of the doping element was measured either by inductively coupled plasma mass spectrometry (ICP–MS) performed on the exhaust water or by energy dispersive X-ray spectrometry (X-EDS) analysis on ultramicrotomed membrane electrode assembly (MEA), and correlated to the performance losses upon ageing. It appears that the NTO-based support leads to lower performances than the ATO-based one, mainly owing to the low electronic conductivity of NTO. However, in the case of ATO, dissolution of the Sb doping element is non-negligible and represents a major issue from a stability point-of-view.
Funder
Agence Nationale de la Recherche
European Research Council
Seventh Framework Programme
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献