Electrical Insulator Fault Forecasting Based on a Wavelet Neuro-Fuzzy System

Author:

Frizzo Stefenon StéfanoORCID,Zanetti Freire RobertoORCID,dos Santos Coelho Leandro,Meyer Luiz Henrique,Bartnik Grebogi Rafael,Gouvêa Buratto William,Nied Ademir

Abstract

The surface contamination of electrical insulators can increase the electrical conductivity of these components, which may lead to faults in the electrical power system. During inspections, ultrasound equipment is employed to detect defective insulators or those that may cause failures within a certain period. Assuming that the signal collected by the ultrasound device can be processed and used for both the detection of defective insulators and prediction of failures, this study starts by presenting an experimental procedure considering a contaminated insulator removed from the distribution line for data acquisition. Based on the obtained data set, an offline time series forecasting approach with an Adaptive Neuro-Fuzzy Inference System (ANFIS) was conducted. To improve the time series forecasting performance and to reduce the noise, Wavelet Packets Transform (WPT) was associated to the ANFIS model. Once the ANFIS model associated with WPT has distinct parameters to be adjusted, a complete evaluation concerning different model configurations was conducted. In this case, three inference system structures were evaluated: grid partition, fuzzy c-means clustering, and subtractive clustering. A performance analysis focusing on computational effort and the coefficient of determination provided additional parameter configurations for the model. Taking into account both parametrical and statistical analysis, the Wavelet Neuro-Fuzzy System with fuzzy c-means showed that it is possible to achieve impressive accuracy, even when compared to classical approaches, in the prediction of electrical insulators conditions.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3