Abstract
We synthesized lead-free piezoelectric (Bi0.5Na0.5-xKx)TiO3 (BNKT) ceramics using a conventional solid-state reaction method. We have investigated the structural and electrical properties of the materials with x = 0.05 to 0.40. The X-ray diffraction (XRD) analysis suggests that the BNKT ceramics show the transition from rhombohedral to tetragonal structure. The ratio of the tetragonal structure increased continuously in accordance with the increasing composition of x. The sample of x = 0.10 showed a similar ratio between the tetragonal and rhombohedral structures. Frequency-dependent dielectric measurements showed a sort of relaxor properties emerged with increasing x composition, this effect may be interpreted in terms of the formation of polar nano-regions (PNRs) in samples. The value of remnant polarization (Pr) decreases rapidly as x increases beyond the point of x = 0.10 from 25.3 μC/cm2 to 5.9 μC/cm2. On the contrary, as for inverse piezoelectric coefficient (d33*), a higher value of d33* (336 pm/V) at x = 0.10, was observed when compared with x = 0.05 (d33* = 51 pm/V). These results can be explained by the formation of PNRs and their variations with the external applied field. We here propose a possible mechanism showing the effects of dipolar defects, which can be resulted from the K ion substitution on (Bi,Na)TiO3 (BNT) ceramics.
Funder
National Research Foundation of Korea
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献