Microfluidic Methods for Generation of Submicron Droplets: A Review

Author:

Huang Biao1,Xie Huiying1,Li Zhenzhen1ORCID

Affiliation:

1. School of Aerospace Engineering, Beijing Institute of Technology, 5# ZhongGuanCunNan Street, Haidian District, Beijing 100081, China

Abstract

Submicron droplets are ubiquitous in nature and widely applied in fields such as biomedical diagnosis and therapy, oil recovery and energy conversion, among others. The submicron droplets are kinetically stable, their submicron size endows them with good mobility in highly constricted pathways, and the high surface-to-volume ratio allows effective loading of chemical components at the interface and good heat transfer performance. Conventional generation technology of submicron droplets in bulk involves high energy input, or relies on chemical energy released from the system. Microfluidic methods are widely used to generate highly monodispersed micron-sized or bigger droplets, while downsizing to the order of 100 nm was thought to be challenging because of sophisticated nanofabrication. In this review, we summarize the microfluidic methods that are promising for the generation of submicron droplets, with an emphasize on the device fabrication, operational condition, and resultant droplet size. Microfluidics offer a relatively energy-efficient and versatile tool for the generation of highly monodisperse submicron droplets.

Funder

China NSFC

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3