Recent State and Challenges in Spectroelectrochemistry with Its Applications in Microfluidics

Author:

Li Zhenglong1,Chande Charmi1,Cheng Yu-Hsuan1,Basuray Sagnik12ORCID

Affiliation:

1. Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA

2. Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA

Abstract

This review paper presents the recent developments in spectroelectrochemical (SEC) technologies. The coupling of spectroscopy and electrochemistry enables SEC to do a detailed and comprehensive study of the electron transfer kinetics and vibrational spectroscopic fingerprint of analytes during electrochemical reactions. Though SEC is a promising technique, the usage of SEC techniques is still limited. Therefore, enough publicity for SEC is required, considering the promising potential in the analysis fields. Unlike previously published review papers primarily focused on the relatively frequently used SEC techniques (ultraviolet-visible SEC and surface-enhanced Raman spectroscopy SEC), the two not-frequently used but promising techniques (nuclear magnetic resonance SEC and dark-field microscopy SEC) have also been studied in detail. This review paper not only focuses on the applications of each SEC method but also details their primary working mechanism. In short, this paper summarizes each SEC technique’s working principles, current applications, challenges encountered, and future development directions. In addition, each SEC technique’s applicative research directions are detailed and compared in this review work. Furthermore, integrating SEC techniques into microfluidics is becoming a trend in minimized analysis devices. Therefore, the usage of SEC techniques in microfluidics is discussed.

Funder

Sagnik Basuray’s NSF

Cancer Biomarker Panel using Shear Enhanced Nanoporous Capacitive Electrodes and NSF I-Corps

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3