A Sensitive and Flexible Capacitive Pressure Sensor Based on a Porous Hollow Hemisphere Dielectric Layer

Author:

Cui Haoao1,Liu Yijian1,Tang Ruili1,Ren Jie2,Yao Liang2,Cai Yuhao1,Chen Da1

Affiliation:

1. Laboratory for Intelligent Flexible Electronics, College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China

2. Beijing Smart-Chip Microelectronics Technology Co., Ltd., Beijing 100192, China

Abstract

Capacitive pressure sensors based on porous structures have been widely researched and applied to a variety of practical applications. To date, it remains a big challenge to develop a capacitive pressure sensor with a high sensitivity and good linearity over a wide pressure range. In this paper, a sensitive, flexible, porous capacitive pressure sensor was designed and manufactured by means of the “salt template method” and man-made grooves. To this aim, the size of the salt particles used for forming pores/air voids, time taken for thorough dissolution of salt particles, and the depth of the man-made groove by a pin were taken into consideration to achieve a better effect. With pores and the groove, the sensor is more liable be compressed, which will result in a dramatic decrease in distance between the two electrodes and a conspicuous increase of the effective dielectric constant. The optimize-designed sensor represents a sensitivity 6–8 times more than the sensor without the groove in the pressure range of 0–10 kPa, not to mention the sensor without pores or the groove, and it can keep good linearity within the measurement range (0–50 kPa). Besides, the sensor shows a low detection limit of 3.5 Pa and a fast response speed (≈50 ms), which makes it possible to detect a tiny applied pressure immediately. The fabricated sensor can be applied to wearable devices to monitor finger and wrist bending, and it can be used in the object identification of mechanical claws and object cutting of mechanical arms, and so on.

Funder

National Natural Science Foundation of China

Shandong University Youth Innovation Supporting Program

Tai Shan Scholar Engineering Construction Fund of Shandong Province of China

Youth Natural Science Foundation of Shandong Province

Shenzhen Science and Technology Program

Project of Shandong Province Graduate Education Course

The science and technology project of Qingdao West Coast New Area

Laboratory Open Fund of Beijing Smart-chip Microelectronics Technology Co., Ltd.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3