The System’s Point of View Applied to Dielectrophoresis in Plate Capacitor and Pointed-versus-Pointed Electrode Chambers

Author:

Gimsa Jan1ORCID,Radai Michal M.2

Affiliation:

1. Department of Biophysics, University of Rostock, Gertrudenstr. 11A, 18057 Rostock, Germany

2. Independent Researcher, HaPrachim 19, Ra’anana 4339963, Israel

Abstract

The DEP force is usually calculated from the object’s point of view using the interaction of the object’s induced dipole moment with the inducing field. Recently, we described the DEP behavior of high- and low-conductive 200-µm 2D spheres in a square 1 × 1-mm chamber with a plane-versus-pointed electrode configuration from the system’s point of view. Here we extend our previous considerations to the plane-versus-plane and pointed-versus-pointed electrode configurations. The trajectories of the sphere center and the corresponding DEP forces were calculated from the gradient of the system’s overall energy dissipation for given starting points. The dissipation’s dependence on the sphere’s position in the chamber is described by the numerical “conductance field”, which is the DC equivalent of the capacitive charge-work field. While the plane-versus-plane electrode configuration is field-gradient free without an object, the presence of the highly or low-conductive spheres generates structures in the conductance fields, which result in very similar DEP trajectories. For both electrode configurations, the model describes trajectories with multiple endpoints, watersheds, and saddle points, very high attractive and repulsive forces in front of pointed electrodes, and the effect of mirror charges. Because the model accounts for inhomogeneous objectpolarization by inhomogeneous external fields, the approach allows the modeling of the complicated interplay of attractive and repulsive forces near electrode surfaces and chamber edges. Non-reversible DEP forces or asymmetric magnitudes for the highly and low-conductive spheres in large areas of the chamber indicate the presence of higher-order moments, mirror charges, etc.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3