Enhanced Modulation Bandwidth by Delayed Push–Pull Modulated DFB Lasers

Author:

Chi Jiewen1,Li Xun12,Niu Chuanning1,Zhao Jia1

Affiliation:

1. School of Information Science and Engineering, Shandong University, Qingdao 266237, China

2. Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada

Abstract

The bandwidth of a distributed feedback (DFB) directly modulated laser (DML) is limited by its carrier–photon resonance (CPR) frequency. A viable approach to break the bottleneck is to introduce a photon–photon resonance (PPR), since the PPR can happen at a much higher frequency than the CPR. Among the many structures that can possibly generate the PPR, the dual-sectional push–pull modulated (PPM) DFB is of particular interest for its fabrication cost-effectiveness as no regrowth is required. The PPR in the PPM DFB, however, usually shows a rapid roll-off on both edges, which brings in an indentation on the lower frequency side of the PPR peak and, consequently, cuts off the bandwidth. To compensate for this dip, we introduce a detuned PPR and restart the CPR response by exploiting a time delay between the differential signals applied to the PPM DFB. Our simulation result shows that the broadened PPR peak and the restarted CPR response indeed mitigate the dip and effectively expand the PPM-DFB’s bandwidth to approximately 50 GHz, a value double that of the conventional (single-sectional) DFB DML.

Funder

National Key Technology R&D Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3