Abstract
The semi-arid regions of northeastern Brazil have historically suffered from water shortage. In this context, monitoring and modeling the soil moisture’s dynamics with hydrological models in natural (Caatinga) and degraded (Pasture) regions is of fundamental importance to understand the dynamics of hydrological processes. Therefore, this work aims to evaluate the hydraulic parameters in Caatinga and Pasture areas using the Hydrus-1D inverse method. Thus, five soil hydraulic models present in Hydrus-1D were used, allowing the comparison of the single-porosity model with more complex models, which consider the dual porosity and the hysteresis of the porous medium. The hydraulic models showed better adjustments in the Caatinga area (RMSE = 0.01–0.02, R2 = 0.61–0.97) than in the Pasture area (RMSE = 0.01–0.03, R2 = 0.61–0.90). Regarding the hydraulic parameters, for all models, the Pasture showed smaller saturated hydraulic conductivity and water content values of the mobile region than the Caatinga. This fact demonstrates the negative impact of compaction and change in natural vegetation in the Brazilian semi-arid. The dual-porosity model presented the best fit to the data measured in the Pasture area. However, a single-porosity model could be considered representative of the Caatinga area. The results showed that Caatinga areas contribute to maintaining soil moisture and increasing the water storage in semi-arid regions.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献