A 3D, Compartmental Tumor-Stromal Microenvironment Model of Patient-Derived Bone Metastasis

Author:

Mohseni Garakani MansourehORCID,Cooke Megan E.ORCID,Weber Michael H.,Wertheimer Michael R.ORCID,Ajji Abdellah,Rosenzweig Derek H.ORCID

Abstract

Bone is a frequent site of tumor metastasis. The bone–tumor microenvironment is heterogeneous and complex in nature. Such complexity is compounded by relations between metastatic and bone cells influencing their sensitivity/resistance to chemotherapeutics. Standard chemotherapeutics may not show efficacy for every patient, and new therapeutics are slow to emerge, owing to the limitations of existing 2D/3D models. We previously developed a 3D interface model for personalized therapeutic screening, consisting of an electrospun poly lactic acid mesh activated with plasma species and seeded with stromal cells. Tumor cells embedded in an alginate-gelatin hydrogel are overlaid to create a physiologic 3D interface. Here, we applied our 3D model as a migration assay tool to verify the migratory behavior of different patient-derived bone metastasized cells. We assessed the impact of two different chemotherapeutics, Doxorubicin and Cisplatin, on migration of patient cells and their immortalized cell line counterparts. We observed different migratory behaviors and cellular metabolic activities blocked with both Doxorubicin and Cisplatin treatment; however, higher efficiency or lower IC50 was observed with Doxorubicin. Gene expression analysis of MDA-MB231 that migrated through our 3D hybrid model verified epithelial–mesenchymal transition through increased expression of mesenchymal markers involved in the metastasis process. Our findings indicate that we can model tumor migration in vivo, in line with different cell characteristics and it may be a suitable drug screening tool for personalized medicine approaches in metastatic cancer treatment.

Funder

Natural Sciences and Engineering Research Council

Canadian Institutes of Health Research

Research Institute of McGill University Health Center

Fonds de Recherche du Québec-Santé (FRQS) Junior 2 Research Scholar Award

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference79 articles.

1. Metastatic bone disease: Clinical features, pathophysiology and treatment strategies;Coleman;Cancer Treat. Rev.,2001

2. Skeletal complications of malignancy;Coleman;Cancer,1997

3. Advances in personalized treatment of metastatic spine disease;Ahangar;Ann. Transl. Med.,2019

4. Low-dose zoledronate for the treatment of bone metastasis secondary to prostate cancer;Akoury;Cancer Cell Int.,2019

5. 3D-printed scaffolds loaded with therapeutics for the treatment of bone metastases;Akoury;Orthopaedic Proceedings,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3