Downexpression of miR-200c-3p Contributes to Achalasia Disease by Targeting the PRKG1 Gene

Author:

Micale LuciaORCID,Fusco CarmelaORCID,Nardella Grazia,Palmieri OrazioORCID,Latiano Tiziana,Gioffreda Domenica,Tavano FrancescaORCID,Panza Anna,Merla Antonio,Biscaglia Giuseppe,Gentile Marco,Cuttitta Antonello,Castori Marco,Perri FrancescoORCID,Latiano Anna

Abstract

Achalasia is an esophageal smooth muscle motility disorder with unknown pathogenesis. Taking into account our previous results on the downexpression of miR-200c-3p in tissues of patients with achalasia correlated with an increased expression of PRKG1, SULF1, and SYDE1 genes, our aim was to explore the unknown biological interaction between these genes and human miR-200c-3p and if this relation could unravel their functional role in the etiology of achalasia. To search for putative miR-200c-3p binding sites in the 3′-UTR of PRKG1, SULF1 and SYDE1, a bioinformatics tool was used. To test whether PRKG1, SULF1, and SYDE1 are targeted by miR-200c-3p, a dual-luciferase reporter assay and quantitative PCR on HEK293 and fibroblast cell lines were performed. To explore the biological correlation between PRKG1 and miR-200c-3p, an immunoblot analysis was carried out. The overexpression of miR-200c-3p reduced the luciferase activity in cells transfected with a luciferase reporter containing a fragment of the 3′-UTR regions of PRKG1, SULF1, and SYDE1 which included the miR-200c-3p seed sequence. The deletion of the miR-200c-3p seed sequence from the 3′-UTR fragments abrogated this reduction. A negative correlation between miR-200c-3p and PRKG1, SULF1, and SYDE1 expression levels was observed. Finally, a reduction of the endogenous level of PRKG1 in cells overexpressing miR-200c-3p was detected. Our study provides, for the first time, functional evidence about the PRKG1 gene as a direct target and SULF1 and SYDE1 as potential indirect substrates of miR-200c-3p and suggests the involvement of NO/cGMP/PKG signaling in the pathogenesis of achalasia.

Funder

Italian Minister of Health

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3