Abstract
Aging has a significant negative impact on human testicular function; steroidogenesis is gradually impaired, and testosterone replacement therapy still has many risks. Low-intensity pulsed ultrasound (LIPUS) has been used as a novel non-invasive treatment for male erectile dysfunction and other fields, and has been shown to increase testosterone levels in animal models. Testosterone is synthesized and secreted by Leydig cells (LCs), and the serum testosterone level decreases after aging due to the LCs senescence. However, the effect of LIPUS on human senescent LCs has not been reported. In this study, human senescent LCs were isolated and stimulated with different energy intensities in vitro, and cell morphology, cell apoptosis, cell proliferation, cell senescence levels, lipid droplet number, testosterone and INSL3 secretion levels were tested and analyzed. Quantitative Polymerase Chain Reaction (QPCR) and Western Blot were performed to compare cell senescence characteristics and the expression profile of key pathways of testosterone secretion, and transcriptome analysis was performed to explore the signaling pathways of LCs alteration after LIPUS stimulation. It was safe and effective to stimulate LCs with the 75 mW/cm2 energy of LIPUS in vitro, which not only improved the senescence phenotype, but also effectively enhanced the secretory function of LCs in vitro, and increased the expression of key pathways of the testosterone synthesis pathway. These results suggest that LIPUS could be used as a novel treatment to human senescent LCs with decreased testosterone secretion levels in vitro.
Funder
Shanghai science and technology innovation action plan project
Clinical Research Innovation Plan of Shanghai General Hospital
National Natural Science Foundation of China
the Key Project of Research and Development of Ningxia Hui Autonomous Region of China
Shanghai Sailing Program
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献