Saprophytic to Pathogenic Mycobacteria: Loss of Cytochrome P450s Vis a Vis Their Prominent Involvement in Natural Metabolite Biosynthesis

Author:

Zondo Ntokozo Minenhle,Padayachee TiaraORCID,Nelson David R.ORCID,Syed KhajamohiddinORCID

Abstract

Cytochrome P450 monooxygenases (P450s/CYPs) are ubiquitous enzymes with unique regio- and stereo-selective oxidation activities. Due to these properties, P450s play a key role in the biosynthesis of natural metabolites. Mycobacterial species are well-known producers of complex metabolites that help them survive in diverse ecological niches, including in the host. In this study, a comprehensive analysis of P450s and their role in natural metabolite synthesis in 2666 mycobacterial species was carried out. The study revealed the presence of 62,815 P450s that can be grouped into 182 P450 families and 345 subfamilies. Blooming (the presence of more than one copy of the same gene) and expansion (presence of the same gene in many species) were observed at the family and subfamily levels. CYP135 was the dominant family in mycobacterial species. The mycobacterial species have distinct P450 profiles, indicating that lifestyle impacts P450 content in their genome vis a vis P450s, playing a key role in organisms’ adaptation. Analysis of the P450 profile revealed a gradual loss of P450s from non-pathogenic to pathogenic mycobacteria. Pathogenic mycobacteria have more P450s in biosynthetic gene clusters that produce natural metabolites. This indicates that P450s are recruited for the biosynthesis of unique metabolites, thus helping these pathogens survive in their niches. This study is the first to analyze P450s and their role in natural metabolite synthesis in many mycobacterial species.

Funder

University of Zululand

National Research Foundation (NRF), South Africa

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference57 articles.

1. Yamazaki, H. (2014). Fifty Years of Cytochrome P450 Research, Springer Japan.

2. Oritz de Montellano, P.R. (2015). Cytochrome P450: Structure, Mechanism, and Biochemistry, Springer International Publishing. [4th ed.]. Chapter 6.

3. Cytochrome P450 diversity in the tree of life;Nelson;Biochim. Biophys. Acta Proteins Proteom.,2018

4. Studies on pig liver microsomes. I. Enzymic and pigment composition of different microsomal fractions;Garfinkel;Arch. Biochem. Biophys.,1958

5. Pigments of rat liver microsomes;Klingenberg;Arch. Biochem. Biophys.,1958

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3