Abstract
Chronic kidney disease (CKD) is a slow-developing, progressive deterioration of renal function. The final common pathway in the pathophysiology of CKD involves glomerular sclerosis, tubular atrophy and interstitial fibrosis. Transforming growth factor-beta (TGF-β) stimulates the differentiation of fibroblasts towards myofibroblasts and the production of extracellular matrix (ECM) molecules, and thereby interstitial fibrosis. It has been shown that endoglin (ENG, CD105), primarily expressed in endothelial cells and fibroblasts, can function as a co-receptor of TGF signaling. In several human organs, endoglin tends to be upregulated when chronic damage and fibrosis is present. We hypothesize that endoglin is upregulated in renal interstitial fibrosis and plays a role in the progression of CKD. We first measured renal endoglin expression in biopsy samples obtained from patients with different types of CKD, i.e., IgA nephropathy, focal segmental glomerulosclerosis (FSGS), diabetic nephropathy (DN) and patients with chronic allograft dysfunction (CAD). We showed that endoglin is upregulated in CAD patients (p < 0.001) and patients with DN (p < 0.05), compared to control kidneys. Furthermore, the amount of interstitial endoglin expression correlated with eGFR (p < 0.001) and the amount of interstitial fibrosis (p < 0.001), independent of the diagnosis of the biopsies. Finally, we investigated in vitro the effect of endoglin overexpression in TGF-β stimulated human kidney fibroblasts. Overexpression of endoglin resulted in an enhanced ACTA2, CCN2 and SERPINE1 mRNA response (p < 0.05). It also increased the mRNA and protein upregulation of the ECM components collagen type I (COL1A1) and fibronectin (FN1) (p < 0.05). Our results suggest that endoglin is an important mediator in the final common pathway of CKD and could be used as a possible new therapeutic target to counteract the progression towards end-stage renal disease (ESRD).
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Reference56 articles.
1. GBD Chronic Kidney Disease Collaboration (2020). Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet, 395, 709–733.
2. Epidemiology and causes of end stage renal disease (ESRD);Shaheen;Saudi J. Kidney Dis. Transpl.,2005
3. Chronic kidney disease: A review of proteomic and metabolomic approaches to membranous glomerulonephritis, focal segmental glomerulosclerosis, and IgA nephropathy biomarkers;Taherkhani;Proteome Sci.,2019
4. Chronic kidney disease;Levey;Lancet,2012
5. Role of TGF-beta in chronic kidney disease: An integration of tubular, glomerular and vascular effects;Cell Tissue Res.,2012
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献