Evidence for a Conserved Function of Eukaryotic Pantothenate Kinases in the Regulation of Mitochondrial Homeostasis and Oxidative Stress

Author:

Ceccatelli Berti CamillaORCID,Gihaz ShalevORCID,Figuccia SoniaORCID,Choi Jae-Yeon,Pal Anasuya C.ORCID,Goffrini PaolaORCID,Ben Mamoun Choukri

Abstract

Human PANK1, PANK2, and PANK3 genes encode several pantothenate kinase isoforms that catalyze the phosphorylation of vitamin B5 (pantothenic acid) to phosphopantothenate, a critical step in the biosynthesis of the major cellular cofactor, Coenzyme A (CoA). Mutations in the PANK2 gene, which encodes the mitochondrial pantothenate kinase (PanK) isoform, have been linked to pantothenate-kinase associated neurodegeneration (PKAN), a debilitating and often fatal progressive neurodegeneration of children and young adults. While the biochemical properties of these enzymes have been well-characterized in vitro, their expression in a model organism such as yeast in order to probe their function under cellular conditions have never been achieved. Here we used three yeast mutants carrying missense mutations in the yeast PanK gene, CAB1, which are associated with defective growth at high temperature and iron, mitochondrial dysfunction, increased iron content, and oxidative stress, to assess the cellular function of human PANK genes and functional conservation of the CoA-controlled processes between humans and yeast. Overexpression of human PANK1 and PANK3 in these mutants restored normal cellular activity whereas complementation with PANK2 was partial and could only be achieved with an isoform, PanK2mtmΔ, lacking the mitochondrial transit peptide. These data, which demonstrate functional conservation of PanK activity between humans and yeast, set the stage for the use of yeast as a model system to investigate the impact of PKAN-associated mutations on the metabolic pathways altered in this disease.

Funder

NBIA Disorders Association

Blavatnik Family Fund

University of Parma

NIH

Alexandra and Steven Cohen Foundation

Global Lyme Alliance

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3