Age- and Lifespan-Dependent Differences in GO Caused DNA Damage in Acheta domesticus

Author:

Flasz Barbara,Dziewięcka MartaORCID,Ajay Amrendra K.ORCID,Tarnawska Monika,Babczyńska AgnieszkaORCID,Kędziorski Andrzej,Napora-Rutkowski Łukasz,Ziętara Patrycja,Świerczek Ewa,Augustyniak MariaORCID

Abstract

The rising applicability of graphene oxide (GO) should be preceded by detailed tests confirming its safety and lack of toxicity. Sensitivity to GO of immature, or with different survival strategy, individuals has not been studied so far. Therefore, in the present research, we focused on the GO genotoxic effects, examining selected parameters of DNA damage (total DNA damage, double-strand breaks—DSB, 8-hydroxy-2′-deoxyguanosine-8-OHdG, abasic site—AP sites), DNA damage response parameters, and global methylation in the model organism Acheta domesticus. Special attention was paid to various life stages and lifespans, using wild (H), and selected for longevity (D) strains. DNA damage was significantly affected by stage and/or strain and GO exposure. Larvae and young imago were generally more sensitive than adults, revealing more severe DNA damage. Especially in the earlier life stages, the D strain reacted more intensely/inversely than the H strain. In contrast, DNA damage response parameters were not significantly related to stage and/or strain and GO exposure. Stage-dependent DNA damage, especially DSB and 8-OHdG, with the simultaneous lack or subtle activation of DNA damage response parameters, may result from the general life strategy of insects. Predominantly fast-living and fast-breeding organisms can minimize energy-demanding repair mechanisms.

Funder

Research Excellence Initiative of the University of Silesia in Katowice

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3