Presence of Ceramidase Activity in Electronegative LDL

Author:

Puig Núria,Rives Jose,Estruch Montserrat,Aguilera-Simon AnaORCID,Rotllan NoemiORCID,Camacho MercedesORCID,Colomé Núria,Canals Francesc,Sánchez-Quesada José LuisORCID,Benitez SoniaORCID

Abstract

Electronegative low-density lipoprotein (LDL(−)) is a minor modified fraction of human plasma LDL with several atherogenic properties. Among them is increased bioactive lipid mediator content, such as lysophosphatidylcholine (LPC), non-esterified fatty acids (NEFA), ceramide (Cer), and sphingosine (Sph), which are related to the presence of some phospholipolytic activities, including platelet-activating factor acetylhydrolase (PAF-AH), phospholipase C (PLC), and sphingomyelinase (SMase), in LDL(−). However, these enzymes’ activities do not explain the increased Sph content, which typically derives from Cer degradation. In the present study, we analyzed the putative presence of ceramidase (CDase) activity, which could explain the increased Sph content. Thin layer chromatography (TLC) and lipidomic analysis showed that Cer, Sph, and NEFA spontaneously increased in LDL(−) incubated alone at 37 °C, in contrast with native LDL(+). An inhibitor of neutral CDase prevented the formation of Sph and, in turn, increased Cer content in LDL(−). In addition, LDL(−) efficiently degraded fluorescently labeled Cer (NBD-Cer) to form Sph and NEFA. These observations defend the existence of the CDase-like activity’s association with LDL(−). However, neither the proteomic analysis nor the Western blot detected the presence of an enzyme with known CDase activity. Further studies are thus warranted to define the origin of the CDase-like activity detected in LDL(−).

Funder

Instituto de Salud Carlos III, Spanish Ministry of Health

CIBER

Ministerio de Ciencia e Innovación

CIBERDEM

CIBERCV

Quality Research Group

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Special Issue: New Insight into the Molecular Role of Lipids and Lipoproteins in Vascular Diseases;International Journal of Molecular Sciences;2023-06-26

2. Can Electronegative LDL Act as a Multienzymatic Complex?;International Journal of Molecular Sciences;2023-04-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3