Effects of Ascorbic Acid on Physiological Characteristics during Somatic Embryogenesis of Fraxinus mandshurica

Author:

Cheng Xue,Xie Tianyi,Yang LingORCID,Shen Hailong

Abstract

Fraxinus mandshurica is one of the precious tree species in northeast China and has important economic and ecological value. Ascorbic acid (ASA) is a strong antioxidant that can significantly improve plant photosynthetic efficiency and stress resistance and participate widely in plant growth and development. In this study, we investigated the development process of mature zygotic embryos of F. mandshurica under different concentrations of ASA and found that 100 mg·L−1 exogenous ASA was the optimal concentration and that the induction rate of somatic embryos (SEs) was the highest at 72.89%, which was 7.13 times higher than that of the control group. The polyphenol content, peroxidase (POD) activity, nitric oxide (NO) content, nitrate reductase (NR) activity, total ascorbic acid (T-ASA) content, ASA content, ASA/Dehydroascorbic acid (DHA) ratio, GSH/GSSG ratio, and ascorbate peroxidase (APX) activity were significantly increased under the application of exogenous ASA in explants, whereas the polyphenol oxidase (PPO) activity, phenylalanine ammonia-lyase (PAL) activity, superoxide dismutase (SOD) activity, and catalase (CAT) activity, malondialdehyde (MDA) content and nitric oxide synthase (NOS) activity were decreased. At the same time, the content of T-ASA and ASA, T-GSH and GSSG, and PAL and SOD had the same change pattern in the control group and the treatment group. These results suggested that high or low concentrations of ASA could not promote the somatic embryogenesis of F. mandshurica and that exogenous ASA had significant effects on the physiology of F. mandshurica explants. ASA was also highly related to somatic embryogenesis and the explant browning of F. mandshurica. Our results could provide a reference for further study on the browning mechanism of F. mandshurica explants and lay the foundation for optimizing the condition of somatic embryogenesis in F. mandshurica.

Funder

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3