Dihydromyricetin Attenuates High-Intensity Exercise-Induced Intestinal Barrier Dysfunction Associated with the Modulation of the Phenotype of Intestinal Intraepithelial Lymphocytes

Author:

Hou Pengfei,Wang Dawei,Lang Hedong,Yao Yu,Zhou Jie,Zhou Min,Zhu Jundong,Yi Long,Mi Mantian

Abstract

Background: Exercise-induced gastrointestinal syndrome (GIS) has symptoms commonly induced by strenuous sports. The study aimed to determine the effect of dihydromyricetin (DHM) administration on high-intensity exercise (HIE)-induced intestinal barrier dysfunction and the underlying mechanism involved with intestinal intraepithelial lymphocytes (IELs). Methods: The HIE model was established with male C57BL/6 mice using a motorized treadmill for 2 weeks, and DHM was given once a day by oral gavage. After being sacrificed, the small intestines of the mice were removed immediately. Results: We found that DHM administration significantly suppressed HIE-induced intestinal inflammation, improved intestinal barrier integrity, and inhibited a HIE-induced increase in the number of IELs and the frequency of CD8αα+ IELs. Meanwhile, several markers associated with the activation, gut homing and immune functions of CD8αα+ IELs were regulated by DHM. Mechanistically, luciferase reporter assay and molecular docking assay showed DHM could activate the aryl hydrocarbon receptor (AhR). Conclusions: These data indicate that DHM exerts a preventive effect against HIE-induced intestinal barrier dysfunction, which is associated with the modulation of the quantity and phenotype of IELs in the small intestine. The findings provide a foundation to identify novel preventive strategies based on DHM supplementation for HIE-induced GIS.

Funder

the scientific research grant

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3