Light-Dependent Nitrate Removal Capacity of Green Microalgae

Author:

Rani VaishaliORCID,Maróti GergelyORCID

Abstract

In the present study, Chlamydomonas sp. MACC-216 was used to investigate total nitrate removal in TAP medium with sodium nitrate as the sole nitrogen source under several light conditions made up of permuted combinations of three light colors (referred to as blue, red, and white light) and three light intensities (50 µmol m−2 s−1, 100 µmol m−2 s−1, and 250 µmol m−2 s−1). It was observed that nitrate removal efficiency is influenced by light color as well as light intensity. Additionally, Chlamydomonas sp. MACC-216 was cultivated in synthetic wastewater under four light conditions, namely, Blue 250, Blue 125 + Red 125, Red 250, and White 250, where it showed the highest nitrate removal efficiency and nitrate reductase activity under the Blue 125 + Red 125 light condition. To observe the impact of light color on the nitrate removal capacity of Chlamydomonas sp. MACC-216, the expression of five genes participating in nitrate transport and reduction (NRT1, NRT2.1, NRT2.2, NIA, and MCP) was also analyzed; these genes showed the highest expression under the Blue 125 + Red 125 light condition. Based on the above-mentioned findings, the blue + red light combination emerged as a promising light combination for nitrate removal. Hence, our study suggests the importance of the blue + red light combination together with high light intensity, as the optimal light condition for nitrate removal from synthetic wastewater in comparison to other monochromatic lights with high light intensity.

Funder

National Research, Development and Innovation Office

Hungarian Academy of Sciences

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3