Characterization of Diabetic Retinopathy in Two Mouse Models and Response to a Single Injection of Anti-Vascular Endothelial Growth Factor

Author:

Azrad-Leibovich Tamar,Zahavi AlonORCID,Gohas Moran Friedman,Brookman Myles,Barinfeld Orit,Muhsinoglu Orkun,Michowiz Shalom,Fixler DrorORCID,Goldenberg-Cohen NitzaORCID

Abstract

In this study, we characterized diabetic retinopathy in two mouse models and the response to anti-vascular endothelial growth factor (VEGF) injection. The study was conducted in 58 transgenic, non-obese diabetic (NOD) mice with spontaneous type 1 diabetes (n = 30, DMT1-NOD) or chemically induced (n = 28, streptozotocin, STZ-NOD) type 1 diabetes and 20 transgenic db/db mice with type 2 diabetes (DMT2-db/db); 30 NOD and 8 wild-type mice served as controls. Mice were examined at 21 days for vasculopathy, retinal thickness, and expression of genes involved in oxidative stress, angiogenesis, gliosis, and diabetes. The right eye was histologically examined one week after injection of bevacizumab, ranibizumab, saline, or no treatment. Flat mounts revealed microaneurysms and one apparent area of tufts of neovascularization in the diabetic retina. Immunostaining revealed activation of Müller glia and prominent Müller cells. Mean retinal thickness was greater in diabetic mice. RAGE increased and GFAP decreased in DMT1-NOD mice; GFAP and SOX-9 mildly increased in db/db mice. Anti-VEGF treatment led to reduced retinal thickness. Retinas showed vasculopathy and edema in DMT1-NOD and DMT2-db/db mice and activation of Müller glia in DMT1-NOD mice, with some response to anti-VEGF treatment. Given the similarity of diabetic retinopathy in mice and humans, comparisons of type 1 and type 2 diabetic mouse models may assist in the development of new treatment modalities.

Funder

ZANVYL AND ISABELLE KRIEGER FUND, Baltimore, Maryland, USA

D-CURE, ISRAEL MINISTRY OF HEALTH AND ISRAEL SCIENTIFIC FOUNDATION, Jerusalem, Israel

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3