Activation of Transposable Elements in Human Skeletal Muscle Fibers upon Statin Treatment

Author:

Valdebenito-Maturana BraulioORCID,Valdebenito-Maturana FrancoORCID,Carrasco Mónica,Tapia Juan CarlosORCID,Maureira Alejandro

Abstract

High cholesterol levels have been linked to a high risk of cardiovascular diseases, and preventative pharmacological care to lower cholesterol levels is critically important. Statins, which are hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, are drugs used to reduce the endogenous cholesterol synthesis, thus minimizing its pathophysiological effects. Despite the proven benefits, statins therapy is known to cause a number of skeletal muscle disorders, including myalgia, myopathy and myositis. The mechanisms underlying such statin-induced side effects are unknown. Recently, a group of genes and molecular pathways has been described to participate in statin-induced myopathy, caused by either simvastatin or rosuvastatin, although the mechanism by which changes in gene regulation occur was not studied. Transposable Elements (TEs), repetitive elements that move within the genome, are known to play regulatory roles in gene expression; however, their role in statin-induced muscle damage has not been studied. We analyzed the expression of TEs in human skeletal fiber cells treated with either simvastatin or rosuvastatin, as well as their respective controls, and identified TEs that change their expression in response to the treatment. We found that simvastatin resulted in >1000 differentially expressed (DE) TEs, whereas rosuvastatin resulted in only 27 DE TEs. Using network analysis tools, we predicted the impact of the DE TEs on the expression of genes and found that amongst the genes potentially modulated by TEs, there are some previously associated to statin-linked myopathy pathways (e.g., AKT3). Overall, our results indicate that TEs may be a key player in the statin-induced muscle side effects.

Funder

IBRO

Agencia Nacional de Investigación y Desarrollo de Chile

FONDEQUIP-ANID

ANID FONDECYT Postdoctorado

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference45 articles.

1. The search for new cardiovascular biomarkers;Gerszten;Nature,2008

2. High-density lipoproteins, reverse cholesterol transport and atherogenesis;Pownall;Nat. Rev. Cardiol.,2021

3. Low Density Lipoprotein Cholesterol and Coronary Heart Disease—Lower is Better;Eur. Cardiol. Rev.,2005

4. Statin Safety and Associated Adverse Events: A Scientific Statement From the American Heart Association;Newman;Arterioscler. Thromb. Vasc. Biol.,2019

5. Statin-induced myopathic changes in primary human muscle cells and reversal by a prostaglandin F2 alpha analogue;Grunwald;Sci. Rep.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3