Lipid Peroxidation and Iron Metabolism: Two Corner Stones in the Homeostasis Control of Ferroptosis

Author:

Rochette Luc,Dogon Geoffrey,Rigal Eve,Zeller MarianneORCID,Cottin YvesORCID,Vergely Catherine

Abstract

Regulated cell death (RCD) has a significant impact on development, tissue homeostasis, and the occurrence of various diseases. Among different forms of RCD, ferroptosis is considered as a type of reactive oxygen species (ROS)-dependent regulated necrosis. ROS can react with polyunsaturated fatty acids (PUFAs) of the lipid (L) membrane via the formation of a lipid radical L• and induce lipid peroxidation to form L-ROS. Ferroptosis is triggered by an imbalance between lipid hydroperoxide (LOOH) detoxification and iron-dependent L-ROS accumulation. Intracellular iron accumulation and lipid peroxidation are two central biochemical events leading to ferroptosis. Organelles, including mitochondria and lysosomes are involved in the regulation of iron metabolism and redox imbalance in ferroptosis. In this review, we will provide an overview of lipid peroxidation, as well as key components involved in the ferroptotic cascade. The main mechanism that reduces ROS is the redox ability of glutathione (GSH). GSH, a tripeptide that includes glutamic acid, cysteine, and glycine, acts as an antioxidant and is the substrate of glutathione peroxidase 4 (GPX4), which is then converted into oxidized glutathione (GSSG). Increasing the expression of GSH can inhibit ferroptosis. We highlight the role of the xc- GSH-GPX4 pathway as the main pathway to regulate ferroptosis. The system xc-, composed of subunit solute carrier family members (SLC7A11 and SLC3A2), mediates the exchange of cystine and glutamate across the plasma membrane to synthesize GSH. Accumulating evidence indicates that ferroptosis requires the autophagy machinery for its execution. Ferritinophagy is used to describe the removal of the major iron storage protein ferritin by the autophagy machinery. Nuclear receptor coactivator 4 (NCOA4) is a cytosolic autophagy receptor used to bind ferritin for subsequent degradation by ferritinophagy. During ferritinophagy, stored iron released becomes available for biosynthetic pathways. The dysfunctional ferroptotic response is implicated in a variety of pathological conditions. Ferroptosis inducers or inhibitors targeting redox- or iron metabolism-related proteins and signal transduction have been developed. The simultaneous detection of intracellular and extracellular markers may help diagnose and treat diseases related to ferroptotic damage.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3