Abstract
Iron–sulfur (Fe–S) clusters are essential cofactors for enzyme activity. These Fe–S clusters are present in structurally diverse forms, including [4Fe–4S] and [3Fe–4S]. Type-identification of the Fe–S cluster is indispensable in understanding the catalytic mechanism of enzymes. However, identifying [4Fe–4S] and [3Fe–4S] clusters in particular is challenging because of their rapid transformation in response to oxidation–reduction events. In this study, we focused on the relationship between the Fe–S cluster type and the catalytic activity of a tRNA-thiolation enzyme (TtuA). We reconstituted [4Fe–4S]-TtuA, prepared [3Fe–4S]-TtuA by oxidizing [4Fe–4S]-TtuA under strictly anaerobic conditions, and then observed changes in the Fe–S clusters in the samples and the enzymatic activity in the time-course experiments. Electron paramagnetic resonance analysis revealed that [3Fe–4S]-TtuA spontaneously transforms into [4Fe–4S]-TtuA in minutes to one hour without an additional free Fe source in the solution. Although the TtuA immediately after oxidation of [4Fe–4S]-TtuA was inactive [3Fe–4S]-TtuA, its activity recovered to a significant level compared to [4Fe–4S]-TtuA after one hour, corresponding to an increase of [4Fe–4S]-TtuA in the solution. Our findings reveal that [3Fe–4S]-TtuA is highly inactive and unstable. Moreover, time-course analysis of structural changes and activity under strictly anaerobic conditions further unraveled the Fe–S cluster type used by the tRNA-thiolation enzyme.
Funder
Platform Project for Supporting Drug Discovery and Life Science Research
Japan Agency for Medical Research and Development
Hokkaido University “Ambitious Leader’s Program”
Grants-in-Aid for Scientific Research
Institute for Molecular Science
Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献