Low Specificity but Dissimilar Mycorrhizal Communities Associating with Roots May Contribute to the Spatial Pattern of Four Co-Occurring Habenaria (Orchidaceae) Species

Author:

Zhang WenliuORCID,Gao Jiangyun,Shao Shicheng,Li Taiqiang

Abstract

Fungi with orchid roots have been increasingly proven to play important roles in orchid growth, spatial distribution, and coexistence of natural communities. Here, we used 454 amplicon pyrosequencing with two different primer combinations to investigate the spatial variations in the community of OMF and endophytic fungi associates within the roots of four co-occurring Habenaria species. The results showed that all investigated Habenaria species were generalists and the different fungi communities may contribute to the spatial separation of the four Habenaria species. Firstly, the fungal OTUs identified in the roots of the four species overlapped but their presence differed amongst species and numerous distinct OMF families were unique to each species. Second, NMDS clustering showed samples clustered together based on associated species and PERMANOVA analyses indicated that fungi communities in the roots differed significantly between the Habenaria species, both for all endophytic fungi communities and for OMF communities. Third, the network structure of epiphytic fungi was highly specialized and modular but demonstrated lowly connected and anti-nested properties. However, it calls for more soil nutrition and soil fungal communities’ studies to elucidate the contribution of habitat-specific adaptations in general and mycorrhizal divergence.

Funder

Innovation Fund of Gansu Universities

West Light Talent Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference65 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3