Abstract
The thermosensory transient receptor potential (thermoTRP) family of ion channels is constituted by several nonselective cation channels that are activated by physical and chemical stimuli functioning as paradigmatic polymodal receptors. Gating of these ion channels is achieved through changes in temperature, osmolarity, voltage, pH, pressure, and by natural or synthetic chemical compounds that directly bind to these proteins to regulate their activity. Given that thermoTRP channels integrate diverse physical and chemical stimuli, a thorough understanding of the molecular mechanisms underlying polymodal gating has been pursued, including the interplay between stimuli and differences between family members. Despite its complexity, recent advances in cryo-electron microscopy techniques are facilitating this endeavor by providing high-resolution structures of these channels in different conformational states induced by ligand binding or temperature that, along with structure-function and molecular dynamics, are starting to shed light on the underlying allosteric gating mechanisms. Because dysfunctional thermoTRP channels play a pivotal role in human diseases such as chronic pain, unveiling the intricacies of allosteric channel gating should facilitate the development of novel drug-based resolving therapies for these disorders.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献