Protective Effect of Pioglitazone on Retinal Ganglion Cells in an Experimental Mouse Model of Ischemic Optic Neuropathy

Author:

Sun Ming-HuiORCID,Chen Kuan-JenORCID,Sun Chi-Chin,Tsai Rong-KungORCID

Abstract

The aim was to assess the protective effect of pioglitazone (PGZ) on retinal ganglion cells (RGCs) after anterior ischemic optic neuropathy (AION) in diabetic and non-diabetic mice. Adult C57BL/6 mice with induced diabetes were divided into three groups: group 1: oral PGZ (20 mg/kg) in 0.1% dimethyl sulfoxide (DMSO) for 4 weeks; group 2: oral PGZ (10 mg/kg) in 0.1% DMSO for 4 weeks; and group 3: oral DMSO only for 4 weeks (control group). Two weeks after treatment, AION was induced through photochemical thrombosis. For non-diabetic mice, adult C57BL/6 mice were divided into four groups after AION was induced: group 1: oral DMSO for 4 weeks; group 2: oral PGZ (20 mg/kg) in 0.1% DMSO for 4 weeks; group 3: oral PGZ (20 mg/kg) in 0.1% DMSO + peritoneal injection of GW9662 (one kind of PPAR-γ inhibitor) (1 mg/kg) for 4 weeks; group 4: peritoneal injection of GW9662 (1 mg/kg) for 4 weeks; One week after the induction of AION in diabetic mice, apoptosis in RGCs was much lower in group 1 (8.0 ± 4.9 cells/field) than in group 2 (24.0 ± 11.5 cells/field) and 3 (25.0 ± 7.7 cells/field). Furthermore, microglial cell infiltration in the retina (group 1: 2.0 ± 2.6 cells/field; group 2: 15.6 ± 3.5 cells/field; and group 3: 14.8 ± 7.5 cells/field) and retinal thinning (group 1: 6.7 ± 5.7 μm; group 2: 12.8 ± 6.1 μm; and group 3: 15.8 ± 5.8 μm) were also lower in group 1 than in the other two groups. In non-diabetic mice, preserved Brn3A+ cells were significantly greater in group 2 (2382 ± 140 Brn3A+ cells/mm2, n = 7) than in group 1 (1920 ± 228 Brn3A+ cells/mm2; p = 0.03, n = 4), group 3 (1938 ± 213 Brn3A+ cells/mm2; p = 0.002, n = 4), and group 4 (2138 ± 126 Brn3A+ cells/mm2; p = 0.03, n = 4), respectively; PGZ confers protection to RGCs from damage caused by ischemic optic neuropathy in diabetic and non-diabetic mice.

Funder

Chang Gung Memorial Hospital

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3