Abstract
Cytokine receptor-like factor 2 B-cell acute lymphoblastic leukemia (CRLF2 B-ALL) is a high-risk subtype characterized by CRLF2 overexpression with poor survival rates in children and adults. CRLF2 and interleukin-7 receptor alpha (IL-7Rα) form a receptor for the cytokine thymic stromal lymphopoietin (TSLP), which induces JAK/STAT and PI3K/AKT/mTOR pathway signals. Previous studies from our group showed that low TSLP doses increased STAT5, AKT, and S6 phosphorylation and contributed to CRLF2 B-ALL cell survival. Here we investigated the role of TSLP in the survival and proliferation of CRLF2 B-ALL cells in vitro and in vivo. We hypothesized that high doses of TSLP increase CRLF2 signals and contribute to increased proliferation of CRLF2 B-ALL cells in vitro and in vivo. Interestingly, we observed the opposite effect. Specifically, high doses of TSLP induced apoptosis in human CRLF2 B-ALL cell lines in vitro, prevented engraftment of CRLF2 B-ALL cells, and prolonged the survival of +TSLP patient-derived-xenograft mice. Mechanistically, we showed that high doses of TSLP induced loss of its receptor and loss of CRLF2 signals in vitro. These results suggest that high doses of TSLP could be further investigated as a potential therapy for the treatment of CRLF2 B-ALL.
Funder
National Institutes of Health
St. Baldrick’s Foundation
Loma Linda University
GCAT
GRASP
LLU Center for Health Disparities & Molecular Medicine and the Department of Pathology and Human Anatomy
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献