TSLP as a Potential Therapy in the Treatment of CRLF2 B Cell Acute Lymphoblastic Leukemia

Author:

Alkashgari Hossam R.,Ruiz-Jimenez Caleb,Stoian Cornelia,Coats Jacqueline S.,Baez Ineavely,Chirshev EvgenyORCID,Martinez Shannalee R.,Dovat Sinisa,Francis-Boyle Olivia L.ORCID,Casiano Carlos A.,Payne Kimberly J.

Abstract

Cytokine receptor-like factor 2 B-cell acute lymphoblastic leukemia (CRLF2 B-ALL) is a high-risk subtype characterized by CRLF2 overexpression with poor survival rates in children and adults. CRLF2 and interleukin-7 receptor alpha (IL-7Rα) form a receptor for the cytokine thymic stromal lymphopoietin (TSLP), which induces JAK/STAT and PI3K/AKT/mTOR pathway signals. Previous studies from our group showed that low TSLP doses increased STAT5, AKT, and S6 phosphorylation and contributed to CRLF2 B-ALL cell survival. Here we investigated the role of TSLP in the survival and proliferation of CRLF2 B-ALL cells in vitro and in vivo. We hypothesized that high doses of TSLP increase CRLF2 signals and contribute to increased proliferation of CRLF2 B-ALL cells in vitro and in vivo. Interestingly, we observed the opposite effect. Specifically, high doses of TSLP induced apoptosis in human CRLF2 B-ALL cell lines in vitro, prevented engraftment of CRLF2 B-ALL cells, and prolonged the survival of +TSLP patient-derived-xenograft mice. Mechanistically, we showed that high doses of TSLP induced loss of its receptor and loss of CRLF2 signals in vitro. These results suggest that high doses of TSLP could be further investigated as a potential therapy for the treatment of CRLF2 B-ALL.

Funder

National Institutes of Health

St. Baldrick’s Foundation

Loma Linda University

GCAT

GRASP

LLU Center for Health Disparities & Molecular Medicine and the Department of Pathology and Human Anatomy

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3