Abstract
Freezing severely impacts potato production. Deciphering the pathways and metabolites that regulate the freezing tolerance of potato is useful in cultivation and breeding for hardiness. In the present study, Solanum acaule was identified to be more freezing tolerant than S. tuberosum. Furthermore, the two genotypes before/after exposure to 4 °C for 7 d with additional −1 °C for 12 h were analysed by RNA-seq and metabolomics, and the results were compared with the previous −1 °C for 12 h. The results showed that S. acaule activated numerous genes that differed from those of S. tuberosum. Among the genes, five pathways, such as the hormone signalling pathway, which includes salicylic acid, were enriched. Further metabolomics analysis showed that the content of salicylic acid was improved in S. acaule in response to −1 °C for 12 h. Moreover, exogenous application of 0.1 mM salicylic acid to potato was shown to improve constitutive freezing tolerance and increase the expression of HSFC1. Following transcriptome and metabolome analyses, it was documented that the content of SA that increased in freezing-tolerant S. acaule after exposure to cold condition, associated with the SA signalling pathway, enhanced potato freezing tolerance, probably through HSFC1.
Funder
Guangdong Basic and Applied Basic Research Foundation
Key-Area Research and Development Program of Guangdong Province
National Natural Science Foundation of China
Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, the Ministry of Agriculture and Rural Affairs, P.R. China
Chinesisch-Deutschen Zentrum für Wissenschaftsförderung
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献