Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is an important neuroactive molecule, as neurotransmitters regulate various biological functions in vertebrates and invertebrates by binding and activating specific 5-HT receptors. The pharmacology and tissue distribution of 5-HT receptors have been investigated in several model insects, and these receptors are recognized as potential insecticide targets. However, little is known about the pharmacological characterization of the 5-HT receptors in important agricultural pests. In this study, we investigated the sequence, pharmacology, and tissue distribution of 5-HT7 receptors from oriental armyworm Mythimna separata (Walker) (Lepidoptera: Noctuidae), an important migratory and polyphagous pest species. We found that the 5-HT7 receptor gene encodes two molecularly distinct transcripts, Msep5-HT7L and Msep5-HT7S, by the mechanism of alternative splicing in M. separata. Msep5-HT7S differs from Msep5-HT7L based on the deletion of 95 amino acids within the third intracellular loop. Two Msep5-HT7 receptor isoforms were activated by 5-HT and synthetic agonists α-methylserotonin, 8-hydroxy-DPAT, and 5-methoxytryptamine, resulting in increased intracellular cAMP levels in a dose-dependent manner, although these agonists showed much poorer potency and efficacy than 5-HT. The maximum efficacy of 5-HT compared to the two 5-HT isoforms was equivalent, but 5-HT exhibited 2.63-fold higher potency against the Msep5-HT7S than the Msep5-HT7L receptor. These two isoforms were also blocked by the non-selective antagonist methiothepin and the selective antagonists WAY-100635, ketanserin, SB-258719, and SB-269970. Moreover, two distinct mRNA transcripts were expressed preferentially in the brain and chemosensory organs of M. separata adults, as determined by qPCR assay. This study is the first comprehensive characterization of two splicing isoforms of 5-HT7 receptors in M. separata, and the first to demonstrate that alternative splicing is also the mechanism for producing multiple 5-HT7 isoforms in insects. Pharmacological and gene expression profiles offer important information that could facilitate further exploration of their function in the central nervous system and peripheral chemosensory organs, and may even contribute to the development of new selective pesticides.
Funder
National Natural Science Foundation of China
Department of Science and Technology of Henan Province Key Research
Development and Promotion Special Projects
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis