Functional Characterization of the CpNAC1 Promoter and Gene from Chimonanthus praecox in Arabidopsis

Author:

Zhao Xiaoyan,Zhao Jiahui,Yang Qing,Huang Min,Song Yangjing,Li Mingyang,Sui Shunzhao,Liu Daofeng

Abstract

The NAC (NAM, ATAF, and CUC) gene family is one of the largest plant-specific transcription factor families. Its members have various biological functions that play important roles in regulating plant growth and development and in responding to biotic and abiotic stresses. However, their functions in woody plants are not fully understood. In this study, we isolated an NAC family member, the CpNAC1 promoter and gene, from wintersweet. CpNAC1 was localized to the nucleus and showed transcriptional activation activity. qRT-PCR analyses revealed that the gene was expressed in almost all tissues tested, with the highest levels found in mature leaves and flower buds. Moreover, its expression was induced by various abiotic stresses and ABA treatment. Its expression patterns were further confirmed in CpNAC1pro:GUS (β-glucuronidase) plants. Among all the transgenic lines, CpNAC1pro-D2 showed high GUS histochemical staining and activity in different tissues of Arabidopsis. Furthermore, its GUS activity significantly increased in response to various abiotic stresses and ABA treatment. This may be related to the stress-related cis-elements, such as ABRE and MYB, which clustered in the CpNAC1pro-D2 segment, suggesting that CpNAC1pro-D2 is the core segment that responds to abiotic stresses and ABA. In addition, CpNAC1-overexpressed Arabidopsis plants had weaker osmosis tolerance than the wild-type plants, demonstrating that CpNAC1 may negatively regulate the drought stress response in transgenic Arabidopsis. Our results provide a foundation for further analyses of NAC family genes in wintersweet, and they broaden our knowledge of the roles that NAC family genes may play in woody plants.

Funder

National Natural Science Foundation of China

Natural Science Foundation Project of Chongqing

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3