Abstract
Exosomes have attracted attention due to their ability to promote intercellular communication leading to enhanced cell recruitment, lineage-specific differentiation, and tissue regeneration. The object of this study was to determine the effect of exosomes on cell homing and angiogenic differentiation for pulp regeneration. Exosomes (DPSC-Exos) were isolated from rabbit dental pulp stem cells cultured under a growth (Exo-G) or angiogenic differentiation (Exo-A) condition. The characterization of exosomes was confirmed by nanoparticle tracking analysis and an antibody array. DPSC-Exos significantly promoted cell proliferation and migration when treated with 5 × 108/mL exosomes. In gene expression analysis, DPSC-Exos enhanced the expression of angiogenic markers including vascular endothelial growth factor A (VEGFA), Fms-related tyrosine kinase 1 (FLT1), and platelet and endothelial cell adhesion molecule 1 (PECAM1). Moreover, we identified key exosomal microRNAs in Exo-A for cell homing and angiogenesis. In conclusion, the exosome-based cell homing and angiogenic differentiation strategy has significant therapeutic potential for pulp regeneration.
Funder
National Institute of Dental and Craniofacial Research
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Reference67 articles.
1. Dental caries: From infection to prevention;Islam;Med. Sci. Monit.,2007
2. Review of calcium hydroxide;Foreman;Int. Endod. J.,1990
3. Long-term radiologic pulp evaluation after partial pulpotomy in young permanent molars;Mass;Quintessence Int.,2011
4. Mineral trioxide aggregate: A comprehensive literature review—Part I: Chemical, physical, and antibacterial properties;Parirokh;J. Endod.,2010
5. Mineral trioxide aggregate: A comprehensive literature review—Part II: Leakage and biocompatibility investigations;Torabinejad;J. Endod.,2010
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献