Products of Bisphenol A Degradation Induce Cytotoxicity in Human Erythrocytes (In Vitro)

Author:

Makarova KaterinaORCID,Olchowik-Grabarek Ewa,Drabikowski Krzysztof,Kurkowiak Justyna,Zawada KatarzynaORCID

Abstract

The aim of this work has been to study the possible degradation path of BPA under the Fenton reaction, namely to determine the energetically favorable intermediate products and to compare the cytotoxicity of BPA and its intermediate products of degradation. The DFT calculations of the Gibbs free energy at M06-2X/6-311G(d,p) level of theory showed that the formation of hydroquinone was the most energetically favorable path in a water environment. To explore the cytotoxicity the erythrocytes were incubated with BPA and three intermediate products of its degradation, i.e., phenol, hydroquinone and 4-isopropylphenol, in the concentrations 5–200 μg/mL, for 1, 4 and 24 h. BPA induced the strongest hemolytic changes in erythrocytes, followed by hydroquinone, phenol and 4-isopropylphenol. In the presence of hydroquinone, the highest level of RONS was observed, whereas BPA had the weakest effect on RONS generation. In addition, hydroquinone decreased the level of GSH the most. Generally, our results suggest that a preferable BPA degradation path under a Fenton reaction should be controlled in order to avoid the formation of hydroquinone. This is applicable to the degradation of BPA during waste water treatment and during chemical degradation in sea water.

Funder

National Science Centre

Interdisciplinary Centre for Mathematical and Computational Modeling (ICM) at Warsaw University

NIH Office of Research Infrastructure Programs

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference51 articles.

1. Concentration of bisphenol A in thermal paper;Mendum;Green Chem. Lett. Rev.,2011

2. A systematic review of exposure to bisphenol a from dental treatment;Marzouk;JDR Clin. Trans. Res.,2019

3. A review on sources and health impacts of bisphenol A;Abraham;Rev. Environ. Health,2020

4. Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India;Yamazaki;Ecotoxicol. Environ. Saf.,2015

5. A review of dietary and non-dietary exposure to bisphenol-A;Geens;Food Chem. Toxicol.,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3