Comprehensive Review on g-C3N4-Based Photocatalysts for the Photocatalytic Hydrogen Production under Visible Light

Author:

Zhurenok Angelina V.ORCID,Vasilchenko Danila B.ORCID,Kozlova Ekaterina A.ORCID

Abstract

Currently, the synthesis of active photocatalysts for the evolution of hydrogen, including photocatalysts based on graphite-like carbon nitride, is an acute issue. In this review, a comprehensive analysis of the state-of-the-art studies of graphic carbon nitride as a photocatalyst for hydrogen production under visible light is presented. In this review, various approaches to the synthesis of photocatalysts based on g-C3N4 reported in the literature were considered, including various methods for modifying and improving the structural and photocatalytic properties of this material. A thorough analysis of the literature has shown that the most commonly used methods for improving g-C3N4 properties are alterations of textural characteristics by introducing templates, pore formers or pre-treatment method, doping with heteroatoms, modification with metals, and the creation of composite photocatalysts. Next, the authors considered their own detailed study on the synthesis of graphitic carbon nitride with different pre-treatments and respective photocatalysts that demonstrate high efficiency and stability in photocatalytic production of hydrogen. Particular attention was paid to describing the effect of the state of the platinum cocatalyst on the activity of the resulting photocatalyst. The decisive factors leading to the creation of active materials were discussed.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference115 articles.

1. Long-Term Trends in Global Material and Energy Use;Haberl;Social Ecology Human-Environment Interactions,2016

2. The 2022 Report of the Lancet Countdown on Health and Climate Change: Health at the Mercy of Fossil Fuels;Romanello;Lancet,2022

3. Progress and Prospects of Hydrogen Production: Opportunities and Challenges;Zhang;J. Electron. Sci. Technol.,2021

4. Hydrogen Production from Biomasses and Wastes: A Technological Review;Aziz;Int. J. Hydrogen Energy,2021

5. Emerging Technologies by Hydrogen: A Review;Sazali;Int. J. Hydrogen Energy,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3