Sensorimotor Cortical Activity during Respiratory Arousals in Obstructive Sleep Apnea

Author:

Bahr-Hamm KatharinaORCID,Koirala NabinORCID,Hanif Marsha,Gouveris HaralamposORCID,Muthuraman Muthuraman

Abstract

Intensity of respiratory cortical arousals (RCA) is a pathophysiologic trait in obstructive sleep apnea (OSA) patients. We investigated the brain oscillatory features related to respiratory arousals in moderate and severe OSA. Raw electroencephalography (EEG) data recorded during polysomnography (PSG) of 102 OSA patients (32 females, mean age 51.6 ± 12 years) were retrospectively analyzed. Among all patients, 47 had moderate (respiratory distress index, RDI = 15–30/h) and 55 had severe (RDI > 30/h) OSA. Twenty RCA per sleep stage in each patient were randomly selected and a total of 10131 RCAs were analyzed. EEG signals obtained during, five seconds before and after the occurrence of each arousal were analyzed. The entropy (approximate (ApEn) and spectral (SpEn)) during each sleep stage (N1, N2 and REM) and area under the curve (AUC) of the EEG signal during the RCA was computed. Severe OSA compared to moderate OSA patients showed a significant decrease (p < 0.0001) in the AUC of the EEG signal during the RCA. Similarly, a significant decrease in spectral entropy, both before and after the RCA was observed, was observed in severe OSA patients when compared to moderate OSA patients. Contrarily, the approximate entropy showed an inverse pattern. The highest increase in approximate entropy was found in sleep stage N1. In conclusion, the dynamic range of sensorimotor cortical activity during respiratory arousals is sleep-stage specific, dependent on the frequency of respiratory events and uncoupled from autonomic activation. These findings could be useful for differential diagnosis of severe OSA from moderate OSA.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference58 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3